Files
MyDbEngine/CLAUDE.md

419 lines
15 KiB
Markdown

# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Available Personas
This project uses specialized personas for different types of work. Use these commands to switch modes:
- **`/developer`** - Full development mode with validation workflow (options-first, wait for approval before coding)
- **`/unit-tester`** - Specialized mode for writing comprehensive unit tests for existing code
- **`/technical-writer`** - User documentation writing mode (README, guides, tutorials)
- **`/reset`** - Return to default Claude Code mode
Each persona has specific rules and workflows defined in `.claude/` directory. See the respective files for detailed guidelines.
## Project Overview
MyDbEngine is a lightweight, git-inspired versioned database engine for Python. It maintains complete history of all data modifications using immutable snapshots with SHA-256 content addressing. The project supports multi-tenant storage with thread-safe operations.
### Quick Start Example
```python
from dbengine.dbengine import DbEngine
# Initialize engine
engine = DbEngine(root=".mytools_db")
engine.init("tenant_1")
# Pattern 1: Snapshot-based (complete state saves)
engine.save("tenant_1", "user_1", "config", {"theme": "dark", "lang": "en"})
data = engine.load("tenant_1", "config")
# Pattern 2: Record-based (incremental updates)
engine.put("tenant_1", "user_1", "users", "john", {"name": "John", "age": 30})
engine.put("tenant_1", "user_1", "users", "jane", {"name": "Jane", "age": 25})
all_users = engine.get("tenant_1", "users") # Returns list of all users
```
## Development Commands
### Testing
```bash
# Run all tests
pytest
# Run specific test file
pytest tests/test_dbengine.py
pytest tests/test_serializer.py
# Run single test function
pytest tests/test_dbengine.py::test_i_can_save_and_load
```
### Building and Packaging
```bash
# Build package
python -m build
# Clean build artifacts
make clean
# Clean package artifacts only
make clean-package
```
### Installation
```bash
# Install in development mode with test dependencies
pip install -e .[dev]
```
## Architecture
### Core Components
**DbEngine** (`src/dbengine/dbengine.py`)
- Main database engine class using RLock for thread safety
- Manages tenant-specific storage in `.mytools_db/{tenant_id}/` structure
- Tracks latest versions via `head` file (JSON mapping entry names to digests)
- Stores objects in content-addressable format: `objects/{digest_prefix}/{full_digest}`
- Shared `refs/` directory for cross-tenant pickle-based references
**Serializer** (`src/dbengine/serializer.py`)
- Converts Python objects to/from JSON-compatible dictionaries
- Handles circular references using object ID tracking
- Supports custom serialization via handlers (see handlers.py)
- Special tags: `__object__`, `__id__`, `__tuple__`, `__set__`, `__ref__`, `__digest__`, `__enum__`
- Objects can define `use_refs()` method to specify fields that should be pickled instead of JSON-serialized
- `__ref__`: Used for `use_refs()` system (pickle-based storage)
- `__digest__`: Used by BaseRefHandler for custom binary formats (numpy, etc.)
**Handlers** (`src/dbengine/handlers.py`)
- Extensible handler system for custom type serialization
- Three-tier hierarchy:
- `BaseHandler`: Base interface with `is_eligible_for()` and `tag()`
- `BaseInlineHandler`: For JSON-inline storage (e.g., DateHandler)
- `BaseRefHandler`: For custom binary formats stored in `refs/` (e.g., DataFrames)
- `BaseInlineHandler`: Implements `serialize(obj) → dict` and `deserialize(dict) → obj`
- `BaseRefHandler`: Implements `serialize_to_bytes(obj) → bytes` and `deserialize_from_bytes(bytes) → obj`
- Currently implements `DateHandler` (BaseInlineHandler) for datetime.date objects
- Use `handlers.register_handler()` to add custom handlers
**Utils** (`src/dbengine/utils.py`)
- Type checking utilities: `is_primitive()`, `is_dictionary()`, `is_list()`, etc.
- Class introspection: `get_full_qualified_name()`, `importable_name()`, `get_class()`
- Digest computation: `compute_digest_from_stream()`, `compute_digest_from_bytes()`
**RefHelper and PickleRefHelper** (`src/dbengine/dbengine.py`)
- `RefHelper`: Base class for content-addressable storage in `refs/` directory
- `save_ref_from_bytes(data: bytes) → digest`: Store raw bytes
- `load_ref_to_bytes(digest) → bytes`: Load raw bytes
- Used by `BaseRefHandler` for custom binary formats
- `PickleRefHelper(RefHelper)`: Adds pickle serialization layer
- `save_ref(obj) → digest`: Pickle and store object
- `load_ref(digest) → obj`: Load and unpickle object
- Used by `use_refs()` system and `Serializer`
### Storage Architecture
```
.mytools_db/
├── {tenant_id}/
│ ├── head # JSON: {"entry_name": "latest_digest"}
│ └── objects/
│ └── {digest_prefix}/ # First 24 chars of digest
│ └── {full_digest} # JSON snapshot with metadata
└── refs/ # Shared binary references (cross-tenant)
└── {digest_prefix}/
└── {full_digest} # Pickle or custom binary format
```
**Note**: The `refs/` directory stores binary data in content-addressable format:
- Pickled objects (via `use_refs()` or `PickleRefHelper`)
- Custom binary formats (via `BaseRefHandler`, e.g., numpy arrays)
### Metadata System
Each snapshot includes automatic metadata fields:
- `__parent__`: List containing digest of previous version (or `[None]` for first)
- `__user_id__`: User ID who created the snapshot (was `__user__` in TAG constant)
- `__date__`: ISO timestamp `YYYYMMDD HH:MM:SS %z`
### Two Usage Patterns
**Pattern 1: Snapshot-based (`save()`/`load()`)**
- Save complete object states
- Best for configuration objects or complete state snapshots
- Direct control over what gets saved
**Pattern 2: Record-based (`put()`/`put_many()`/`get()`)**
- Incremental updates to dictionary-like collections
- Automatically creates snapshots only when data changes
- Returns `True/False` indicating if snapshot was created
- Best for managing collections of items
**Important**: Do not mix patterns for the same entry - they expect different data structures.
### Common Pitfalls
⚠️ **Mixing save() and put() on the same entry**
- `save()` expects to store complete snapshots (any object)
- `put()` expects dictionary-like structures with key-value pairs
- Using both on the same entry will cause data structure conflicts
⚠️ **Refs are shared across tenants**
- Objects stored via `use_refs()` go to shared `refs/` directory
- Not isolated per tenant - identical objects reused across all tenants
- Good for deduplication, but be aware of cross-tenant sharing
⚠️ **Parent digest is always a list**
- `__parent__` field is stored as `[digest]` or `[None]`
- Always access as `data[TAG_PARENT][0]`, not `data[TAG_PARENT]`
- This allows for future support of multiple parents (merge scenarios)
### Reference System
Objects can opt into pickle-based storage for specific fields:
1. Define `use_refs()` method returning set of field names
2. Serializer stores those fields in shared `refs/` directory
3. Reduces JSON snapshot size and enables cross-tenant deduplication
4. Example: `DummyObjWithRef` in test_dbengine.py
## Extension Points
### Custom Type Handlers
MyDbEngine supports two types of custom handlers for serializing types:
#### 1. BaseInlineHandler - For JSON Storage
Use when data should be stored directly in the JSON snapshot (human-readable, smaller datasets).
**Example: Custom date handler**
```python
from dbengine.handlers import BaseInlineHandler, handlers
class MyCustomHandler(BaseInlineHandler):
def is_eligible_for(self, obj):
return isinstance(obj, MyCustomType)
def tag(self):
return "MyCustomType"
def serialize(self, obj) -> dict:
return {
"__special__": self.tag(),
"data": obj.to_dict()
}
def deserialize(self, data: dict) -> object:
return MyCustomType.from_dict(data["data"])
# Register the handler
handlers.register_handler(MyCustomHandler())
```
**When to use BaseInlineHandler:**
- Small data structures that fit well in JSON
- Types requiring human-readable storage
- Types needing validation during deserialization
- Simple external library types (e.g., datetime.date)
#### 2. BaseRefHandler - For Binary Storage
Use when data should be stored in optimized binary format in `refs/` directory (large datasets, better compression).
**Example: pandas DataFrame handler**
```python
from dbengine.handlers import BaseRefHandler, handlers
import pandas as pd
import json
class DataFrameHandler(BaseRefHandler):
def is_eligible_for(self, obj):
return isinstance(obj, pd.DataFrame)
def tag(self):
return "DataFrame"
def serialize_to_bytes(self, df) -> bytes:
"""Convert DataFrame to compact binary format"""
import numpy as np
# Store metadata + numpy bytes
metadata = {
"columns": df.columns.tolist(),
"index": df.index.tolist(),
"dtype": str(df.values.dtype)
}
metadata_bytes = json.dumps(metadata).encode('utf-8')
metadata_length = len(metadata_bytes).to_bytes(4, 'big')
numpy_bytes = df.to_numpy().tobytes()
return metadata_length + metadata_bytes + numpy_bytes
def deserialize_from_bytes(self, data: bytes) -> object:
"""Reconstruct DataFrame from binary format"""
import numpy as np
# Read metadata
metadata_length = int.from_bytes(data[:4], 'big')
metadata = json.loads(data[4:4+metadata_length].decode('utf-8'))
numpy_bytes = data[4+metadata_length:]
# Reconstruct array and DataFrame
array = np.frombuffer(numpy_bytes, dtype=metadata['dtype'])
array = array.reshape(len(metadata['index']), len(metadata['columns']))
return pd.DataFrame(array, columns=metadata['columns'], index=metadata['index'])
# Register the handler
handlers.register_handler(DataFrameHandler())
```
**When to use BaseRefHandler:**
- Large binary data (DataFrames, numpy arrays, images)
- Data that benefits from custom compression (e.g., numpy's compact format)
- Types that lose information in JSON conversion
- Shared data across snapshots (automatic deduplication via SHA-256)
**Key differences:**
- `BaseInlineHandler`: Data stored in JSON snapshot → `{"__special__": "Tag", "data": {...}}`
- `BaseRefHandler`: Data stored in `refs/``{"__special__": "Tag", "__digest__": "abc123..."}`
- BaseRefHandler provides automatic deduplication and smaller JSON snapshots
### Using References (use_refs)
For objects with large nested data structures that should be pickled instead of JSON-serialized:
```python
class MyDataObject:
def __init__(self, metadata, large_dataframe):
self.metadata = metadata
self.large_dataframe = large_dataframe # pandas DataFrame, for example
@staticmethod
def use_refs():
"""Return set of field names to pickle instead of JSON-serialize"""
return {"large_dataframe"}
```
**When to use use_refs():**
- Quick solution for large nested objects without writing custom handler
- Works with any picklable object
- Per-object control (some fields in JSON, others pickled)
**use_refs() vs BaseRefHandler:**
- `use_refs()`: Uses pickle (via `PickleRefHelper`), simple but less optimized
- `BaseRefHandler`: Custom binary format (e.g., numpy), optimized but requires handler code
- Both store in `refs/` and get automatic SHA-256 deduplication
- `use_refs()` generates `{"__ref__": "digest"}` tags
- `BaseRefHandler` generates `{"__special__": "Tag", "__digest__": "digest"}` tags
**Trade-offs:**
- ✅ Smaller JSON snapshots
- ✅ Cross-tenant deduplication
- ❌ Less human-readable (binary format)
- ❌ Python version compatibility concerns with pickle (use_refs only)
## Testing Notes
- Test fixtures use `DB_ENGINE_ROOT = "TestDBEngineRoot"` for isolation
- Tests clean up temp directories using `shutil.rmtree()` in fixtures
- Test classes like `DummyObj`, `DummyObjWithRef`, `DummyObjWithKey` demonstrate usage patterns
- Thread safety is built-in via RLock but not explicitly tested
## Key Design Decisions
- **Immutability**: Snapshots never modified after creation (git-style)
- **Content Addressing**: Identical objects stored only once (deduplication via SHA-256)
- **Change Detection**: `put()` and `put_many()` skip saving if data unchanged
- **Thread Safety**: All DbEngine operations protected by RLock
- **No Dependencies**: Core engine has zero runtime dependencies (pytest only for dev)
## Development Workflow and Guidelines
### Development Process
**Code must always be testable**. Before writing any code:
1. **Explain available options first** - Present different approaches to solve the problem
2. **Wait for validation** - Ensure mutual understanding of requirements before implementation
3. **No code without approval** - Only proceed after explicit validation
### Collaboration Style
**Ask questions to clarify understanding or suggest alternative approaches:**
- Ask questions **one at a time**
- Wait for complete answer before asking the next question
- Indicate progress: "Question 1/5" if multiple questions are needed
- Never assume - always clarify ambiguities
### Communication
**Conversations**: French or English
**Code, documentation, comments**: English only
### Code Standards
**Follow PEP 8** conventions strictly:
- Variable and function names: `snake_case`
- Explicit, descriptive naming
- **No emojis in code**
**Documentation**:
- Use Google or NumPy docstring format
- Document all public functions and classes
- Include type hints where applicable
### Dependency Management
**When introducing new dependencies:**
- List all external dependencies explicitly
- Propose alternatives using Python standard library when possible
- Explain why each dependency is needed
### Unit Testing with pytest
**Test naming patterns:**
- Passing tests: `test_i_can_xxx` - Tests that should succeed
- Failing tests: `test_i_cannot_xxx` - Edge cases that should raise errors/exceptions
**Test structure:**
- Use **functions**, not classes (unless inheritance is required)
- Before writing tests, **list all planned tests with explanations**
- Wait for validation before implementing tests
**Example:**
```python
def test_i_can_save_and_load_object():
"""Test that an object can be saved and loaded successfully."""
engine = DbEngine(root="test_db")
engine.init("tenant_1")
digest = engine.save("tenant_1", "user_1", "entry_1", {"key": "value"})
assert digest is not None
def test_i_cannot_save_with_empty_tenant_id():
"""Test that saving with empty tenant_id raises DbException."""
engine = DbEngine(root="test_db")
with pytest.raises(DbException):
engine.save("", "user_1", "entry_1", {"key": "value"})
```
### File Management
**Always specify the full file path** when adding or modifying files:
```
✅ Modifying: src/dbengine/dbengine.py
✅ Creating: tests/test_new_feature.py
```
### Error Handling
**When errors occur:**
1. **Explain the problem clearly first**
2. **Do not propose a fix immediately**
3. **Wait for validation** that the diagnosis is correct
4. Only then propose solutions